In mother ran, 7.3 g of the enamine was taken through this reaction sequence withont the isolation on phrifiation of mas intermediates. The gim which whe oblamod following the has step was ehromatographed on Florisil. Reerystallization of the orystalline fractions from cyclohexane gave $3 . .3 \mathrm{~g}$ of 14 . mp 1411 143°.

3,4-Diphenyl-2-methyl-3-cyclohexen-1-one (15),--A nixixure of 3.0 g of the enamine and 2 ml of Me I in 20 ml uf 1$) \mathrm{MF}$ wanstiret moder N. al room temperature for is hr. Water itiment wan
 and the argane layer was washed well (Hg(), brinel. The wotid which remained when the solvent was renned was rearonallized
 duublet at $\delta 1.16$.
 Sti!!s; 15, 7.17.
5.6-Diphenyl-4a-methyl-4.4a.7.8-tetrahydro-2 3H -naphtha-
 mal of methyl viryl ketance and eo mul of hememe was added darime

 א-.7: 11, 6.ぶ5

Stereochemical Aspects of Analgesics. Preparation of 10-Methyl-5-phenyl-5-propionoxy-trans, syn,trans-tetradecahydroacridine ${ }^{\prime}$

Eidward E. Smassman and Mabtin Stemman ${ }^{2}$
 heceived May 2, 1:85"

Abstract

10-Methyl-5(e)-phenyl-5(a)-propionoxy-trans,syn,trans-tetradecahydruacridine (13al was prepared by the reactim of 10 -methyl-trans,syn,trans-dodecahydroacridone (11) with phenyllithimn followed hr exterification of

It has been shown that there is relatively no difference in analgesic activity between the rigid analogs of prodine, the 1-methyl-4-phenyl-trans-decahydro-4-propionoxyquinolines ($\mathbf{1}$ and 2). ${ }^{3}$ Beckett, in his original postulate of the analgesic receptor site, proposed a

1

2
three-point receptor, modeled on the morphine molecule, ${ }^{4}$ which required an axial disposition of the phenyl ring, an amino group, and a two-carbon chain to fit a receptor-site cavity. The piperidine ring of prodineon meperidine-type analgesics can be substituted with small alkyl functions and still fit such a cavity.

The purpose of this work was to design an analgesic in which large bulky groups were placed in the e. 3 , $\overline{3}$, and 6 positions of the piperidine nucleus of a prodine-type system and ta maintain rigid conformations of the phenyl and ester finctions at the 4 position. The molecule selected fur this purpose
 tetradecahydroacridine with the phenyt being equaturial (3) and axial (4).

Bell and Archer have reparted ethyl $3-\alpha$-phenyi-tropanc-3- β-carboxylate (5) to be slightly more active than meperidine." However. in this system there is

[^0]

3

4

5
no unequivocal control of the anformation of the phenyl ring and no steric barrier to the approach of the phenyl ring to the receptor site.

In analogy to the proparation of the l-mothy-t-pheny-tians-decahydro-4-propionosyquinolines (1 and 2), ${ }^{1}$ it was assmed that the axial and equatomial isomers of 10 -methyl-ī-phenyl-i)-hydroxy-trans.syn.-trans-tetradecahydroacridine ($\mathbf{1 2 a}$ and e) conld be abtained by the reaction of the earrexpunding acridane 11 with either phenylithium or phenylmagesimm bromide (Chat I). The scheme devised for the prepanttion of 10-methyl-trans,sym,trans-dodecahydractidene (11) involved the rednetion of anthranilic acid (6). The catalytic rechetion of 6 utilizing 5% rhodinm un alumina had been reported but solvent conditions were not specified. Jreifelder had reported that propidinealkanoic acids conld be rednced in dilnte aqueous ammonia and this solvent system was fonnd to be nsefnl fur the rednetion of anthranilie acid.

[^1]Chart I

The decahydroacridone 8 was reportedly made from trans-hexahydroanthranilic acid in unstated yield. ${ }^{8}$ In the present work a similar procedure utilizing cishexahydroanthranilic acid (7) was found to be satisfactory; Perkin reported the melting point of the decahydroacridone 8 as 275° and this was the melting point obtained when the cis acid was employed. Thus it appears that either cis-or trans-hexahydroanthranilic acid leads to the same product. Perkin and Sedgwick ${ }^{8}$ attennpted to reduce 8 by an electrolytic method, but not enough material was available for investigation of the product. The reduction of 8 was unsuccessful with $5 \% \mathrm{Pd}-\mathrm{C}$ in absolute alcohol at ambient pressure or $3.52 \mathrm{~kg} / \mathrm{cm}^{2}$; it was likewise unsuccessful with PtO_{2} in absolute alcohol. Upon reduction of 8 with $5 \% \mathrm{Rh}-\mathrm{Al}$, tetradecahydro-5-hydroxyacridine (9) was obtained. An Eschweiler-Clarke methylation of 9 yielded the formate ester of the desired 10 -methyltetradecahydro-5hydroxyacridine (10) and hydrolysis with aqueous sodium hydroxide yielded 10 . Oxidation of the resulting alcohol produced the perhydroacridone 11.

That the perhydroacridone $\mathbf{1 1}$ is the trans,syn,trans compound is indicated by several lines of evidence. In the nmr the lowest field absorption was due to the $\bar{\lambda}$-methyl group at $\delta 2.42$. It would be expected that an equatorial methine proton adjacent to a ni-
trogen or a carbonyl would occur at lower field than the N-methyl protons. Also, the infrared spectrum showed the Bohlmann bands which require the methine protons adjacent to nitrogen to be axial. ${ }^{9}$ The crude mixture, obtained after the reaction, was allowed to stand overnight in methanolic sodium methoxide. It was analyzed by glpe and indicated no change in the mixture of starting material and product. The oxidation was performed in strong acid and in the isolation procedure the material was made strongly basic: thus, there was opportunity for the ketone to epimerize to the most stable isomer by either acid or base catalysis. An excellent review of the steric configuration of piperidine derivatives provides many examples which substantiate the above assignment. ${ }^{10}$

The perhydroacridone failed to react with phenylmagnesium bromide, and in the reaction with phenyllithium only one of the isomeric alcohols could be found by glpe and chromatography on alumina. Numerous attempts to obtain two isomers from this reaction by varying the reaction conditions failed to produce the desired results. The steric barrier to an axial approach of the phenyl function in this reaction prevented the formation of the equatorial alcohol 12 e .

The only isomer obtained from the phenylation reaction, 10 -methyl-5(e)-phenyl-5(a)-hydroxy-trans,syn,-

[^2] (1924).
(9) J. C. Powers, J. Org. Chem., 30, 2534 (1965).
(10) N. S. Prostakov and N. N. Mikheeva, Usp. Khim., 31, 1191 (1962).
trans-tetradecahydroacridine (12a), was esterified by the method of destevens. ${ }^{11}$ The esterification failed hes the method of Ziering ${ }^{12}$ and Beckett. ${ }^{1:}$ (propionic anhydride and prridine) and also by the method of Blickes in which the hydrochloride salt, af the minno alouhn! is treated with promionie :mhydride.

The rembting axial exter 13a was mbmitted find testing by the Fddy hot plate method ${ }^{\text {bis }}$ msing subcutaneous administration. The componnd was intetive at doses of 20,50 , and 100 mg kg and at the last dose was convulsive.

No definite conclusions can be offered from these data. However, since it has been shown previously that the conformation of the phenyl ring in prodine analogs is apparently not important, the supposition can be offered that the tetradecahydroacridines would behave similarly to the decahydropuinolines if the mibstituted two-carban chait was mot important to recentor-site fit. Since no activity was observed the bulky group substituted on the two-cabon chain must. be mportant ar could be altering transport to the offector site.

Experimental Section ${ }^{1 / 5}$

cis-Hexahydroanthranilic Acid (7).-Anthranilic acid (30 (1) g, 0.219 mule, Fastman, recrystallized) was dissulved in 200 ml of water and 12 ml of coneentrated NH_{3} and was hydrogenated at $3.37 \mathrm{~kg} / \mathrm{cm}^{2}$ with 7 g of $\mathrm{i}^{6} \% \mathrm{Rh}-\mathrm{Al}$. The reduction was 80% complete in 24 hr after which time now mas absorberl. After removal of the catalyst, the sulvent was evaporated and the ampmud was recresalized frum aqueons MesCO to yieht
 $(\mathrm{KBr}): 3.3(1)-4.83$ and $6.10\left(\mathrm{NH}_{3}+\right), 6.3 \mathrm{~B}\left(\mathrm{CO}_{2}-{ }^{-}\right)$; $1 \mathrm{~mm}\left(\mathrm{CF}_{3} \mathrm{CO}_{3} \mathrm{H}\right)$, amplicated multiplet $1.50-3.0 .01$)($\mathrm{OH} \%$, two multiplen; centered
 ($\mathrm{NH}_{3}{ }^{+}$).

1,2,3,4,6,7,8,9,5a,9a-Decahydroacridone (8)--cis-IIexahydroanthranitie acid (7) ($8.2 \mathrm{~g}, 0.0$ ant mute) was mixed will (echohexanome ($8.0 \mathrm{~g}, 0.082$ mole). The misture wits heated at 1311° fur 2 hr and al 240° for an additional 2 hr, daring which ime the evolution of NH_{3} conh be detedted. The mass wats extmatent with hot water to remove moreacted acid and recrestallized from EtoH and Des CO to rield $\overline{5} .4 \mathrm{~g}$ i46\% of prodnet: mp 27.5° : ir (KBr), 3.06 and 3.28 (secondary amide vinylog ${ }^{15}$), 6.22 ($\mathrm{C}==01$
 3is: $\mathrm{m}_{\mu}(\epsilon 11,800)$: mun ($\mathrm{CF}_{3} \mathrm{CO}_{3} \mathrm{IH}$), there hrond bands ($0.7 \mathrm{ti}-$ 1.6it, 1.6.5-2.40, and 2.fio-3.30.

Perkin reports the same melting point for the decahydroatridune made from trans-hexahydroanthranilic acid. ${ }^{8}$

[^3]Tetradecahydro-5-hydroxyacridine ($\mathbf{9}$). The dematydut

 in cases in which the abrontion war atill prearint, the hydrogena-

 *iturach :

 $2.913 .211: 111$

10-Methyltetradecahydro-5-hydroxyacridine (10),-The methylation of the seondary amine 9 was perfurmed hy modifi(anion of knw: pwedures.90.31 Tetradecahydro-i-hydroxy-

 of 1.5 me (11, I2 mole of :hi, formatin sohtion. The mixame
 achation began. The flank wa- removed irom the wil bath fon 1.) min and the ereplaced in the sit hath (9)-1(190) fors © h. At the end of this time the formice acid was evaporated and 1-1', Thtoll wiondted mint the whthion lecame atkatine. The sohn-
 and filterest, and the ClfCla was evapomated. An ail remained which was the formate exter of the desired emmpmand; ir thiquid

The formate water was hydrolyad acoording to the methon uf

 oohation was dried (Xgeila, and fittered, and the solvent wat

 athuinta: upen evapomation of the avelvent the product predipi-

10-Methyl-trons, st, in, trins-dodecahydroacridone (11)....|11.
 wat oxdized acomding to liflstiater's method.e: Chrumitacid

 in Ititl mat ai Acill: the whition of the aleohel was heated al

 Frations as min: wer wothend and the firs thee contaned

[^4]Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}: ~ C, ~ 75.97 ; ~ H, ~ 10.47 ; ~ N, ~ 6.33 . ~$ Found: C, $75.52 ; \mathrm{H}, 10.30 ; \mathrm{N}, 6.36$.

10-Methyl-5 (e)-phenyl-5(a)-hydroxy-trans,syn,trans-tetradecahydroacridine (12a).-The reaction of the ketolle $11(0.50 \mathrm{~g}$, 0.0023 mole) with phenyllithium was performed according to the procedure of Ziering ${ }^{12}$ and Beckett. ${ }^{13}$ Li ($0.64 \mathrm{~g}, 0.092 \mathrm{~g}$-atom) was placed in 100 ml of dry ether. A few drops of bromobenzene was added, and the mixture warmed to start the reaction. The remaining bromobenzene (a total $0.8 \mathrm{~g}, 0.0046$ mole) was added at a rate to cause the mixture to reflux vigorously. After the addition was complete, the mixture was refluxed an additional 45 min. The flask was cooled in an ice-salt water bath, the ketone 11 was added over 10 min , and the mixture was stirred at room temperature for 2 hr , refluxed for 1 hr , and allowed to stand for $\overline{5} \mathrm{hr}$. HCl was added while the mixture was cooling in an ice bath. The ether layer was separated, and he aqueons layer was made alkaline with concentrated $\mathrm{NH}_{4} \mathrm{OH}$ and extracted five times with $50-\mathrm{ml}$ portions of ether. The ether layers were combined, dried (MgSO_{4}), and filtered, and the ether was removed to give the desired product (12a) in $66 \%_{c}^{\circ}(0.45 \mathrm{~g})$ yield, $\mathrm{mp} 165^{\circ}$ (recrysallized from Me CO) ; ir (KBr), 9.52 and 9.84 ($\mathrm{C}-\mathrm{O}$ stretching of alcohol ${ }^{19}$), 14.24 (pheny1), (in CHCl_{3}) $2.77(\mathrm{OH})$; $11 \mathrm{mr}\left(\mathrm{CCl}_{4}\right)$, elivelope $0.80-2.20,2.21\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$, broad band $7.20-$ 7.60 (aromatic).

Anal. Caled for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}: \mathrm{C}, 80.22 ; \mathrm{H}, 9.76 ; \mathrm{N}, 4.68$. Found: C, 79.96 ; H, $9.94 ; \mathrm{N}, 4.62$.

10-Methyl-5(e)-phenyl-5(a)-propionoxy-trans,syn,trans-tetradecahydroacridine Hydrochloride (13a),-The alcohol 12a (1.4 $\mathrm{g}, 0.0047 \mathrm{~mole}$) in 50 ml of dried coluene was added slowly to freshly distilled propionyl chloride ($2.0 \mathrm{~g}, 0.0216 \mathrm{~mole}$) in $1 \overline{5} \mathrm{ml}$ of dried toluene. The mixture was stirred and heated at $60-70^{\circ}$
for 7 hr . At the end of this time the precipitate was made alkaline with aqueous VaHCO_{3} and extracted $\left(\mathrm{CHCl}_{3}\right)$. The CHCl_{3} solution was dried and the solvent was evaporated to yield 0.7 g of starting alcohol.

The toluene solution was evaporated and the remaining material was made alkaline with aqueous NaHCO_{3}. The material was extracted (CHCl_{3}) and the latter solution was dried. Upon evaporation of the chloroform, the ester was prepared to yield $0.6 \overline{\mathrm{~g}}$ of product (71% over-all yield from alcohol based on material consumed); mp 109-111 ${ }^{\circ}$ (after purification with acivated charcoal in $\mathrm{Me}_{2} \mathrm{CO}$ and precipitation of the salt from anl acetone solution with ether); ir (KBr), $5.78(\mathrm{C}=0)$; 1 mr $\left(\mathrm{CDCl}_{3}\right)$, broad envelope ($0.80-3.35$ with a triplet centered at 1.28 (ester CH_{3}), quartet center at 3.82 (ester CH_{2}), broad band 4.84, broad band 7.30-7.90 (aromatic).

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{Cl}: \mathrm{C}, 70.47 ; \mathrm{H}, 8.74 ; ~-\quad, 3.57$. Found: C, 69.98; H, 8.94; N, 4.09.

Acknowledgment.-The authors gratefully acknowledge the support of this project by the National Institutes of Health Grants RG-9254 and MH-20,887. The authors wish to express their appreciation to Dr. Everette L. May, Mrs. Louise Atwell, and Mrs. Wendy Ness of the Section of Medicinal Chemistry, Laboratory of Chemistry, National Institute of Mental Disease, for performing the animal tests and probit analyses, and for private communications concerning their research.

Stereochemical Studies on Medicinal Agents. IV. ${ }^{1}$ Conformational Analysis of Ephedrine Isomers and Related Compounds

Philip S. Portoghese
Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455

Received May 5, 1967

Abstract

The conformational preference of ephedrine isomers has been deduced from nmr studies of these compomins and the corresponding 3 -methyl-2-phenylmorpholine diastereomers. The nmr data snggest that, in a variety of solvents, the ephedrines are intramolecularly hydrogen bonded both as the free bases and salts. A possible explanation for the stereo structure-activity relationship of the ephedrines has been advanced. Arylethanolamines such as epinephrine and other related physiologically active compounds have been suggested to exist primarily as internally hydrogen-bonded species.

The differences in activity between ephedrine and its optical isomers have received considerable attention ${ }^{2}$ and the conformational aspects of these compounds with respect to their biological activity recently have been discussed. ${ }^{3}$ Although the complete stereochemistry of ephedrine (I) and ψ-ephedrine (II) has been established rigorously: ${ }^{4,5}$ an assignment of the conformational preference of these diastereomers has remained somewhat controversial. Based on differences in reactivity, it was believed that ephedrine and ψ-ephedrine resided in two different conformations. ${ }^{6,7}$
11) Previous paper, P. S. Portogliese and T. N. Riley, J. Pharm. Sci., 54, 1831 (1965).
(2) (a) K. K. Clien, C. K. Wi, and E, Henriksen, J, Fharmacol E'xpll. Therup., 36, 36:3 (1929); th) K. Slimanoto, S. Cchizumi, and O. Kanauchi, Jupan. J. Pharm. Chem., 27, 460 (1955) ; (c) R. A. Halın, J. B. LaPidus, A. Tye, and J. W. Nelson, J. Pharm. Sci., 54, 378 (1965); (d) P. N. Patil, A Tye, and J. B. Lapidus, J. Pharmacol. Exptl. Therap., 148, 158 (1965); (e) G. Lanciault and H. H. Wolf, J. Pharm. Sci., 54, 841 (1965).
(3) R. B. Barlow, "Introduction to Chemical Pharmacology," 2nd ed, Tohn Wiley and Sons, Iuc., New York, N. S., 1964, p 310; J. B. Lapindus, A. Tye, P. Patil, and B. A. Modi، J. Merl. Chem., 6, 76 (1963).
(4) K. Freudenberg, F. Scloffel, and E. Braun, J. Am. Chem, Soc., 54, 234 (1932) ; K. Freadenbery and F. Nikolai, Ann., 510, 223 (1934).
(5) D. C. Plillips, Acta Cryst., 7, 159 (1954).

It was later suggested ${ }^{8-10}$ that a gauche and trans relationship existed for the hydroxyl and methylamino groups in ψ-ephedrine and ephedrine, respectively. Everett and Hyne ${ }^{11}$ reached the same conclusion from a study of the dissociation constants of isomeric ephedrinium ions. Based on infrared studies, Kansawa ${ }^{12}$ proposed that both isomers are in gauche conformations in chloroform and carbon tetrachloride. In this connection, however, it was noted that ψ ephedrine formed stronger intramolecular hydrogen bonds. More recently, Hyne ${ }^{13}$ has investigated the
(6) H. Emde, Helv. C'him. Acta, 12, 365 (19291.
(7) W. N. Nagai and S. Kanoa, Ann., 470, 157 (1929).
18) L. H. Welsh, J. Am. Chem. Soc., 71, 3500 (1949).
(9) W. J. Close, J. Org. Chem, 15, 1131 (1950).
(10) C. l'odor aud K. Kouzka, J. Chem. sor., 800 (1952).
(11) D. H. E'verett and J. B. Hyne, ibid, 1936 (1958).
(12) T. Kansawa, Bull. Chem. Soc. Japan, 29, 398 (1956); 29, 479 (1956); 29, 604 (1956).
(13) J. B. Hyne, Can. J. Chem., 38, 125 (1960).

[^0]: (1) 'laken in pari from had dissertatim bresemed by Martin Steinman, Ifice 1965, to the Graduate school of the CNiversity of Kansas in partial filfillment of the requirements for the P th. D, degree.
 (2) National Insticutes of Health Predoctoral Fellow, 1964-1965.
 (i3) E. E. Smissman and II. Steinmall, J. Mell. Chem., 9, 455 (1966).
 (4) A. H. Beckett and A. F. Casy, J. Harm. Phurmarol. 6, 986 (19541: Niture, 173, 1231 (1954).
 iii) M. R. Bell and S. Aretier, J. Am. Chem. Soc.. 82, 4638 (19601.

[^1]:
 (i) M. Freifelder، J. Org. Chem., 28, 602 (196.3).

[^2]: (8) W. H. Perkin, Jr., and W. G. Sedgwick, J. Chem. Soc. 125, 2437

[^3]: 1)orfman, and (:. F. Haebener, J. Werl. Chem., 6, 357 11963) .

 1121 A. Ziering and J. Lee, J. Org. Ghem., 12, 911 (1947.
 (1:3) A. H. Beekett, A. F. Casy, G. Kirk, and J. Walker, f. Phom. クиormatol., 9, 939 (19
 (14) 1F. I'. Blicke and li. J. MeCarty, J. Org. Chem., 24, 1069 (1959).
 (15) N. 13. Eddy anl D). Leimbacti. J. Pharmacol. Exptl. Theritp., 107, :8i) (1953).
 (16) Mel(ing points were obtained on a calibrated Kofler miero lot stage alll a Thornas-Hoover U'nimelt and are corrected. Infrared data were re"orded on Beckman IRS and IR8 spectrophotometers. Values are expressed in uicirons. Nmr data were recorded on a Varian Associates Model A-fol spectroneter (asing 'l'MS as tle internal standard or 3-(trimethylsilyl)-1Hropanesulfonic acid sodiom salt when D, O was used ss solvent. All cheini(al shifts are in ppm (δ) downfield from the standard. Uv data were reworded on a Bausch and Lomb bó spectroplotometer. Gas chromatowraplic data were obtained on F and M Wodel 810 research chromatograpl, using a $10 \mathrm{ft} \times 0.25 \mathrm{in}$. colımn of Carbowax 20 MI (15% on Gas-Clirom P support at 225° and $60 \mathrm{ml} / \mathrm{min}$ (He).
 (171 1. T. Bellamy, "The Infrared Spectra of Complex Molecules," 오 ad, Jolin Wiley and Sons, Inc., New York, N. Y., 1958, y 208.
 ©18) M. Freifelder, J. Org. Chem., 29, 2895 (19641.

[^4]:

 Chem, Soc., 77, 3564: $1!5501$.
 (23) R. Wilwhitter, Bor. 29, 393, 036 (1890)

